Azobenzene photoisomerization under high external pressures: testing the strength of a light-activated molecular muscle.
نویسندگان
چکیده
The photoinduced isomerization and thermal back relaxation of an azobenzene-functionalized polymer poly(disperse red 1 acrylate) were investigated at increasing external pressures up to 1.5 GPa inside a diamond-anvil spectroscopic cell. The thermal cis-trans isomerization was monitored by laser pump-probe spectroscopy, which demonstrated an increase in the half-life of the isomerization process with increasing pressure. Additionally, the cis content of the photostationary state gradually decreased as a function of pressure, with complete arrest of the trans-cis photoisomerization above 1.5 GPa. The fact that the photoswitching behavior however could still be observed beyond 1 GPa is remarkable and is effectively a measure of the strength of the azobenzene chromophore as an artificial muscle. The changes in the Raman shifts of both trans- and cis-azobenzene were also investigated from ambient pressure up to 4 GPa, and no discontinuities were observed in the pressure vs wavenumber plots indicating no change in phase. The cis-trans photoisomerization of azobenzene was shown however to still be inducible at all the pressures investigated, confirming the suitability of these molecules for high-efficiency light actuation.
منابع مشابه
Light-driven molecular switches in azobenzene self-assembled monolayers: effect of molecular structure on reversible photoisomerization and stable cis state.
Both the reversible trans<-->cis photoisomerization and slow thermal back cis-to-trans isomerization of azobenzene-functionalized self-assembled monolayers on gold surfaces have been achieved by rationally designed single-component azobenzene thiol.
متن کاملLight-induced dynamic shaping and self-division of multipodal polyelectrolyte-surfactant microarchitectures via azobenzene photomechanics
Light-induced shape transformations represent a fundamental step towards the emergence of adaptive materials exhibiting photomechanical behaviours. Although a range of covalent azobenzene-based photoactive materials has been demonstrated, the use of dynamic photoisomerization in mesostructured soft solids involving non-covalent co-assembly has received little attention. Here we prepare discrete...
متن کاملSynthesis and characterization of termini azobenzene dendrimer
Some organic molecules can be isomerized upon photoirradiation and when accompanied by a change in the visible absorption spectrum, it is called photochromism. Azobenzenes are important part of molecular machines and nanotechnology, Which are This phenomenon is called photoisomerization Azobenzene (azo) chromophores , and have been incorporated into a wide variety of materials and molecular arc...
متن کاملPhotoswitching in nanoporous, crystalline solids: an experimental and theoretical study for azobenzene linkers incorporated in MOFs.
In this article, we use the popular photoswitchable molecule, azobenzene, to demonstrate that the embedding in a nanoporous, crystalline solid enables a precise understanding of light-induced, reversible molecular motion. We investigate two similar azobenzene-containing, pillared-layer metal-organic frameworks (MOFs): Cu2(AzoBPDC)2(BiPy) and Cu2(NDC)2(AzoBiPy). Experimental results from UV-vis ...
متن کاملOptical Properties of Some New Azo Photoisomerizable Bismaleimide Derivatives
Novel polythioetherimides bearing azobenzene moieties were synthesized from azobismaleimides and bis-2-mercaptoethylether. Kinetics of trans-cis photoisomerization and of thermal conversion of cis to trans isomeric forms were investigated in both polymer solution and poly(methyl methacrylate) doped films using electronic absorption spectroscopy. Thermal recovery kinetics is well described by a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 32 شماره
صفحات -
تاریخ انتشار 2012